Что такое зануление и заземление

Каждого человека интересует вопрос безопасности в его собственном доме. Особенно когда речь касается обычных электроприборов. Маленькой поломки или небольшого замыкания достаточно, чтобы они превратились в смертельно опасные предметы.

Особую опасность в доме представляют такие приборы, как бойлер и стиральная машина. Дело в том, что они постоянно контактируют с водой. А она, как известно, лучше всего передаёт электрический ток. При наихудшем развитии ситуации вам даже не нужно будет касаться корпуса, достаточно ступить в лужу воды.

Последствия от удара тока более чем серьёзные вплоть до остановки сердца. Именно поэтому нужно сделать всё возможное, чтобы каждый бытовой прибор в доме был безопасным. Сейчас есть два основных метода защиты: зануление и заземление. Чем они отличаются друг от друга, и в каких случаях стоит применять первый метод, а в каких второй, разберёмся ниже.

Что такое зануление и заземление

Средства защиты


В некоторых случаях пробки и другие защитные устройства не срабатывают при возникшей неисправности. Результатом подобного становится нарушение изоляции. В результате металлические элементы корпуса становятся отличными проводниками, неся огромную опасность.

К счастью, есть зануление и заземление. И та и другая методики позволяют защитить организм человека от поражения электричеством. Тем не менее техническая реализация данных методов защиты электрических приборов серьёзно отличается.

Некоторые части электрических приборов согласно особенностям установки находятся под напряжением. В таком случае производители используют специальные кожухи. Возможны и другие меры защиты, такие как барьеры и сетчатые заграждения. Тем не менее без заземления и зануления обойтись не получится. Они представляют собой крайнюю границу защиты, и чтобы понять, где что нужно применять, необходимо знать, чем они отличаются.

Заземление

Что такое зануление и заземление

Чтобы понять, чем отличается заземление от зануления, начнём с первого. Данная система защиты от поражения электричеством устанавливает цепь между прибором и землёй. Результат действия подобной схемы более чем действенный — напряжение с металлических элементов уходит в землю при случайном прорыве изоляции. Вы можете совершенно спокойно прикасаться к технике, не боясь себе навредить.


После того как вы сделаете заземление. Ток будет уходить по проводнику в землю, не создавая какой-либо опасности для человека. Этим, собственно, и отличается данный метод защиты от зануления.

Заземляющая часть должна иметь минимальный показатель сопротивления. Это необходимо для того, чтобы ток без каких-либо препятствий входил в землю. Это ещё один важный фактор, которым отличается заземление.

Заземление также отличается от зануления тем, что значительно увеличивает аварийный ток, который подаётся при возникновении замыкания. Показатель сопротивления имеет потому малое значение, что в противном случае в аварийной ситуации напряжение будет слишком мало для активации защитного контура. Поэтому устройство может остаться под напряжением.

Что такое зануление и заземление

В заземлении есть два основных элемента — это заземлитель и проводник. Именно они вместе образуют новое устройство. Данный агрегат соединяет бытовые приборы с землёй, делая их безопасными для использования. Принцип работы зануления существенно отличается. Поэтому схема с занулением используется в новых сетях.

В процессе развития средств защиты от спонтанных ударов электричеством заземление поделились на два вида: для отвода импульсного тока и для защиты от грозы. Уникальная конструкция позволяет добиться двух целей в зависимости от изменения некоторых элементов конструкции.

В первом случае проводники поддерживают нормальную работу бытовых приборов даже в аварийных ситуациях. Во втором предотвращают возможное нанесение урона живым организмам. Подобная ситуация возникает в тех случаях, когда нарушается изоляция фазного провода. Так как он выходит на металлический корпус последствия более чем серьёзные.


Что такое зануление и заземление

Мало кто знает, но заземление также может быть и природным, проще говоря, естественным. Металлические конструкции и трубопроводы при выполнении определённых условий могут служить отличным заземлением.

Классификация

Как было сказано выше, в процессе постоянного развития технологий, учёными было выделено множество уникальных схем заземления. В результате существуют такие подгруппы:

  • TN-C,
  • TT,
  • TN-C-S,
  • IT.

В них используются разные схемы соединения, мало того, количество проводников значительно отличается. Сама аббревиатура может много рассказать об устройстве. Первая буква говорит об источнике питания.

  • T — нейтраль, ведущая к земле.
  • I — полностью изолированные проводники.

Вторая буква указывает на метод заземления токопроводящих частей.

  • N — прямая связь с точкой.
  • T — связь с землёй.

В двух приведённых выше схемах вы можете увидеть ещё несколько букв, стоящих через чёрточку. Буква C указывает на наличие всего одного проводника. S — о диаметрально противоположном.

Зануление


Что такое зануление и заземление

Теперь рассмотрим, что такое зануление, и чем оно отличается от обычного заземления. Если говорить о чисто конструкционной составляющей, то данная система защиты от удара электрического тока представляет собой комбинацию металлических частей.

Каждый из элементов конструкции имеет нулевое напряжение. Возможен вариант и с использованием нейтрали. Но она должна иметь трёхфазный источник. Второй вариант включает в себя заземлённый вывод генератора. Причём последний должен иметь одну фазу.

Зануление работает следующим образом. Как только нарушается изоляция, происходит короткое замыкание. В результате срабатывает автоматический выключатель. Конечно, здесь многое зависит от самой системы. К примеру, в некоторых просто перегорают предохранители. В любом случае эффект — это безопасность людей, прикасающихся к устройствам.

Что такое зануление и заземление

Обычно зануление применяется в оборудование, в котором нейтраль наглухо заземлена. В принципе, этим данная система отличается от заземления. Особенность схемы зануления заключается в том, что при подключении УЗО происходит срабатывание всей системы. Подобный казус образуется из-за разности сил тока.

Ещё зануление от заземления отличается тем, что при установке УЗО и автоматического выключателя в нестандартной ситуации могут сработать два этих элемента. Также возможно задействование третьего устройства, обладающего более высоким быстродействием.

Особенности зануления


Что такое зануление и заземление

Зануление отличается тем от заземления, что при коротком замыкании ток должен обязательно достичь показателя, при котором предохранитель расплавится. Конечно, есть ещё альтернатива в виде выключателя.

Чтобы подобного не произошло вам всегда нужно следить за нулевым проводом. От его состояния зависит безопасность всей системы. Чтобы не допустить ток на все объекты зануления необходимо воздержаться от прерывания нулевого провода какими-либо выключателями или предохранителями. Кстати, подобное требование ничем не отличается и для заземления.

Ключевые различия

Что такое зануление и заземление

Мы рассмотрели основные характеристики заземления и зануления, теперь давайте просуммируем, чем они отличаются друг от друга:

  1. Заземление отличается большей эффективностью.
  2. Заземление отличается тем, что обеспечивает безопасность за счёт снижения мощности тока.
  3. Зануление отличается тем, что защита электроприборов осуществляется благодаря отключению повреждённого участка.
  4. Зануление отличается сложностью в установке. Установить заземление под силу каждому.

Как видите, отличия между занулением и заземлениям довольно весомые.

bouw.ru

Для чего необходимо заземление

Если энергоснабжение в помещении организовано в соответствии с ПУЭ, на входе, в распределительном щитке установлены защитные автоматы.

Защитные автоматы

Эти выключатели срабатывают при превышении установленной силы тока: нагревается биметаллическая пластина, происходит ее деформация, и контакты автомата механически размыкаются.

Важно! Именно для этого, автоматы устанавливаются в разрыв фазного проводника. Нулевая шина может быть подключена напрямую.

Происходит разрыв цепи, находящейся под напряжением, электроустановка (или вся цепь) обесточивается, обеспечивая безопасность. Как это работает на практике, и что такое заземление в данной цепочке?

Заземление, это электрический контакт между линией, специально выделенной в электросети, и реальной (физической) землей. То есть шина заземления имеет электрический контакт с грунтом. Одновременно, любая установка, вырабатывающая или распределяющая электрический ток, соединена нулевым проводом с той же землей.

Мы с вами рассматриваем однофазные сети, в которых для питания используются две линии: ноль и фаза. Трехфазные системы в быту применяются редко, поэтому знание этих систем необходимо лишь профессионалам.


Даже если к вам в дом заведено три фазы (такое встречается в частном секторе), для конечного потребления все равно используется два провода: ноль и фаза.

Схема

Допустим, у вашей электроустановки (холодильник, бойлер, стиральная машина), особенно с металлическим корпусом, произошла утечка фазы. То есть, провод под напряжением касается корпуса (отсоединился контакт, нарушена изоляция, протекла вода). Прикоснувшись к электроприбору, вы будете поражены электрическим током. Кроме того, сопротивление в точке касания мизерное, вследствие чего произойдет мгновенный нагрев провода, и возгорание электроприбора.

Если ваш бойлер заземлен, электрический ток потечет по пути наименьшего сопротивления, то есть по контуру: фаза — «земля» — нулевая шина. Сила тока спонтанно возрастет, и сработает аварийное отключение в автомате защиты. Никто не пострадает, материальный ущерб не будет нанесен.

Схема 2

Если вы имеете поверхностные знания устройства электроустановок, возникает вопрос: а зачем нужно заземление, если то же самое произойдет между фазным и нулевым проводом? И собственно, чем отличается заземление от зануления?

Разберем ситуацию со схемами


С точки зрения протекания электрического тока, отличия между заземлением от занулением нет. Нулевой провод в любом случае имеет электрический контакт с физической землей.

Схема 3

Соответственно, при замыкании фазы на корпус, произойдет то самое короткое замыкание, и сработает отключение защитного автомата. Разумеется, (при условии правильного подключения: розетка должна иметь третий земляной контакт, как и электроприбор. По этой причине, электрики, нарушая требования Правил устройства электроустановок, часто разводят земляную шину от нулевого контакта вводного щитка.

Представим ситуацию, когда нулевой провод по какой-то причине разорван:

  • потеря контакта по причине коррозии (в старых многоэтажках это рабочая ситуация);
  • механический разрыв кабеля вследствие ремонтных работ с нарушениями технологии (к сожалению, тоже не редкость);
  • несанкционированное вмешательство доморощенного «электрика»;
  • авария на подстанции (возможно отключение только нулевой шины).

На схеме это выглядит следующим образом:

Схема 4

При организации защитного зануления, электрическая цепь между физической «землей» и контактом заземления электроприбора разрывается. Установка становится беззащитной. Кроме того, свободная фаза без нагрузки может создать потенциал, равный входному напряжению на ближайшей подстанции. Как правило, это 600 вольт. Можно представить, какой ущерб будет нанесен включенному в этот момент электрооборудованию. При этом утечки тока на физическую землю нет, и защитный автомат не сработает.


Представьте, что в этот момент, вы одновременно коснетесь фазы (пробой на корпус электроустановки), и металлического предмета, имеющего физическую связь с грунтом (водопроводный кран или батарея отопления). Можно получить поражение электротоком при напряжении 600 вольт.

А теперь посмотрим, в чем разница между заземлением и занулением (на нашей схеме). При разрыве нулевой шины, просто пропадет питание на всех электроустановках в этой цепи. Поражения электротоком не будет, ни при каких обстоятельствах: электрическая цепь между физической землей и контактом заземления электроприборов не нарушена. Здоровье мы уже сохранили. Теперь посмотрим, что произойдет с электроустановками. Максимум ущерба — это перегоревшая лампа накаливания, ближайшая к вводному щитку. Причем неприятность произойдет лишь в случае повышения напряжения на фазном проводе. Сила тока возрастет (согласно закону Ома), сработает автомат защиты, и возможно, остальные электроприборы не пострадают.

Именно по этой причине, ПУЭ жестко предписывают: защитное заземление и зануление электроустановок должно быть организовано независимо друг от друга, с помощью разных линий.

Для справки: Обычно используется цветовая маркировка проводов:

  1. Фаза — коричневого или белого цвета.
  2. Рабочий ноль — синего цвета.
  3. Защитное заземление — желто-зеленая оболочка.

Провод

Если у вас жилье современной постройки, значит зануление и заземление выполнено согласно Правилам устройства электроустановок. Это легко проверить, взглянув на вводной кабель в щитке. Кроме того, вы сами можете проверить правильность подключения.

Как отличить рабочий ноль и защитное заземление

Разумеется, проверять сопротивление между «нулевым» и «земляным» проводами не следует, особенно если энергосистема под напряжением. В общую щитовую вас тоже никто не пустит. Поэтому, проверять правильность разведения нуля и земли, будем с помощью мультиметра (бытового тестера).

Поскольку точки ввода заземляющих устройств (ноль на подстанции и шина заземления в доме) находятся на удалении друг от друга, между ними есть определенное сопротивление. Грунт, даже влажный, не является идеальным проводником. Если организовать электрическую цепь без нагрузки, мы увидим разницу в потенциалах.

Подключаем измерительный прибор к фазному контакту и рабочему нолю. На схеме это будет цепь «А». Фиксируем значение.

Схема 5

Сразу же подключаем тестер к фазному проводу и контакту защитного ноля. На схеме это цепь «Б». Разницы в потенциале нет: прибор зафиксирует одинаковое значение напряжения. Почему так произошло? При объединении рабочего и защитного ноля, ток в обоих вариантах измерения, фактически протекает по одному и тому же проводу. Сопротивление не меняется, потерь нет, падения напряжения не происходит.

Если ваши результаты измерения показали одинаковое напряжение – проводка подключена с нарушениями Правил устройства электроустановок.

Что произойдет при разнесенном рабочем ноле и защитном заземлении?

Схема 6

При подключении прибора к фазе и нолю, падения напряжения практически нет (на схеме это цепь «А»). Вы увидите действительное значение рабочего напряжения в сети. Подключив тестер к фазному проводу и защитному заземлению, вы замеряете потенциал в длинной цепи. Чтобы замкнуть круг, электрический ток (на схеме цепь «Б») проходит по реальному грунту между точками физических контактов «земли». Учитывая сопротивление грунта, произойдет падение напряжения от 5% до 10%. Прибор покажет более низкое напряжение.

Это говорит о том, что ваша электропроводка организована правильно, у вас имеется настоящее разнесенное защитное заземление. При наличии правильно подобранных автоматов, электрооборудование и пользователи надежно защищены.

Мы разобрались, в чем разница между заземлением и занулением. Польза от правильной организации электроснабжения очевидна.

А как быть, если в вашем доме вообще не предусмотрено защитное заземление

Понятное дело, при проведении капитального ремонта, электрики заменят проводку в соответствии с Правилами устройства электроустановок. Как минимум, в вашем вводном щитке появится три независимых провода: фаза, рабочий ноль и защитное заземление. Останется лишь заменить проводку в розеточной сети.

Но капитальный ремонт может быть выполнен через несколько лет, а вы уже сегодня пользуетесь бойлером и стиральной машинкой без заземления, или того хуже — с защитным занулением. Выход один: организовывать заземление самостоятельно. Если вы живете в частном доме — техническая сторона вопроса существенно упрощается. А вот для многоэтажек, стоимость и сложность работ зависит от этажа.

Как вариант — организовать вскладчину с соседями шину заземления, с распаячными коробками на каждой лестничной клетке.

Заземление

Шина должна быть неразъемной до самого ввода в грунт. Вблизи фундамента, желательно не в дорожном покрытии, а на клумбе, организуется контур заземления согласно Правилам устройства электроустановок. Каждый жилец подъезда может подключится общей шине и завести «землю» в квартиру. Далее есть два варианта:

  1. Организовать контактную группу заземления в распределительном щитке, и заменить всю электропроводку на трехжильную.
  2. Внутри плинтуса, протянуть земляной кабель под каждую розетку, и завести его в монтажные коробочки.

При любом способе, вы защитите и свои электроприборы, и главное — свое здоровье.

Важно! Как нельзя организовывать защитное заземление

То, что «землю» нельзя брать из рабочего ноля, понятно из нашего материала. Есть любители заземлиться на трубы водоснабжения или отопления. Теоретически – стальная труба имеет связь с грунтом. На практике, по стояку могут быть вставки из полипропиленовых труб, и никакого контакта с «реальной землей» нет.

Кроме того, что вы не получаете надежного заземления, ставятся под удар соседи, которые могут получить удар током, просто взявшись за батарею отопления.

profazu.ru

Основные отличия

Как первая, так и вторая система защиты выполняет одну и ту же функцию – защита человека от поражения электричеством при прикосновении к оголенному проводу либо электроприбору, на котором происходит утечка тока. Разница лишь в том, что защитное зануление провоцирует моментальное отключение электроэнергии при опасном контакте человека и провода, а заземление мгновенно отводит опасное напряжение на землю. Так же оно вызывает снижение напряжения занулённых металлических нетоковедущих частей, оказавшихся под напряжением, относительно земли. Это и есть их общее отличие друг от друга, если говорить в двух словах.Опасные ситуации в быту

Если рассматривать вопрос более подробно, то нужно остановиться на том, какой принцип действия у каждого варианта защиты, на основании чего сразу же будет видна разница альтернативных вариантов. Заземление работает следующим образом: к корпусу опасных электроприборов и бытовой техники подключается заземляющий провод, который идет на заземляющую шину в распределительном щитке. Оттуда общий заземляющий проводник выходит к главному заземляющему контуру – металлической конструкции, вкопанной в землю рядом с домом (как показано на фото). Если произойдет пробой тока на корпус прибора либо контакт с оголенной токоведущей жилой, опасность минует человека.

Отвод напряжения в землю

Что касается зануления, оно собой представляет соединение корпуса электроприбора с нейтральным проводом сети – нулем. В результате образуется замкнутый контур, как показано на схеме ниже. При возникновении опасной ситуации произойдет короткое замыкание и автоматические выключатели на вводном щитке моментально отключат электроэнергию.Зануление проводки фото

Наглядно увидеть разницу между занулением и заземлением Вы можете на данной схеме:

Схема на которой показана разница

Надеемся, теперь Вам стало понятно, чем отличаются обе защитные системы и что не менее важно – как они работают. Рекомендуем также просмотреть разницу между ними на наглядном видео примере:

samelectrik.ru

Одними из эффективных средств защиты от поражения электрическим током являются защитное заземление и зануление электроустановок. В соответствии с ГОСТ 12.1.009–76:

защитное заземление это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением;

зануление это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

В вопросах применения и практического выполнения защитного заземления и зануления следует руководствоваться требованиями не только ПУЭ, но и ГОСТ Р 50571. В ГОСТ Р 50571.2– 94 «Электроустановки зданий. Часть 3. Основные характеристики» приводится классификация систем заземления электрических сетей: IT, TT, TN–С, TN–C–S, TN–S (рис.2).

Применительно к сетям переменного тока напряжением до 1 кВ обозначения имеют следующий смысл.

Первая буква – характер заземления источника питания (режим нейтрали вторичной обмотки трансформатора):

  • I – изолированная нейтраль;

  • Т – глухозаземленная нейтраль.

Вторая буква – характер заземления открытых проводящих частей (металлических корпусов) электроустановки:

  • Т – непосредственная связь открытых проводящих частей (ОПЧ) с землей (защитное заземление);

  • N – непосредственная связь ОПЧ с заземленной нейтралью источника питания (зануление).

Последующие буквы (если они имеются) – устройство нулевого рабочего и нулевого защитного проводников:

  • С – нулевой рабочий (N) и нулевой защитный (РЕ) проводники объединены по всей сети;

  • CS – проводники N и РЕ объединены в части сети;

  • S – проводники N и РЕ работают раздельно во всей сети

Что такое зануление и заземление

Рис. 2. Разновидности систем заземления

Проводники, используемые в различных типах сетей, должны иметь определенные обозначения и расцветку (табл. 1).

Таблица 1

Обозначение проводников

Наименование проводника

Обозначение

Расцветка

буквенное

графическое

Нулевой рабочий

N

Что такое зануление и заземление

Голубой

Нулевой защитный (защитный)

PE

Что такое зануление и заземление

Желто-зеленый

Совмещенный нулевой рабочий и нулевой защитный

PEN

Что такое зануление и заземление

Желто-зеленый с голубыми по концам метками, наносимыми при монтаже

Фазный

в трехфазной сети

L1, L2, L3

Все цвета, кроме вышеперечисленных

в однофазной сети

L

Область применения этих способов защиты определяется режимом нейтрали и классом напряжения электроустановки.

Защитное заземление состоит (рис.3) из заземлителя 3 (металлических проводников, находящихся в земле с хорошим контактом с ней) и заземляющего проводника 2, соединяющего металлический корпус электроустановки 1 с заземлителем.

Что такое зануление и заземление

Рис. 3. Схема защитного заземления:

1 — электроустановка; 2 — заземляющий проводник; 3 — заземлитель

Совокупность заземлителя и заземляющих проводов называют заземляющим устройством. Защитное заземление применяют в трехфазных трехпроводных и однофазных двухпроводных сетях переменного тока напряжением до 1000 В с изолированной нейтралью, а также в сетях напряжением выше 1000 В переменного и постоянного тока с любым режимом нейтрали.

Защитное действие заземляющего устройства основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки.

При попадании напряжения на корпус электроустановки человек, коснувшись ее и имея хороший контакт с землей, замыкает собой электрическую цепь: фаза L1 — корпус электроустановки 1 — человек — земля — емкостные ХL3, ХL2 и активные RL3, RL2 сопротивления связи проводов с землей, фазы L3 и L2. По человеку пойдет ток. Несмотря на то что электрические провода сети установлены на изолированных опорах, между ними и землей существует электрическая связь. Она происходит за счет несовершенства изоляции проводов, опор и т. п. и наличия емкости между проводами и землей. При большом протяжении проводов эта связь становится значительной, а ее активное R и емкостное X сопротивления снижаются и становятся соизмеримыми с сопротивлением тела человека. Вот почему, несмотря на отсутствие видимой связи, человек, находящийся под напряжением и имеющий контакт с землей, замыкает собой электрическую цепь между различными фазами сети.

При наличии заземляющего устройства образуется дополнительная цепь: фаза L1 — корпус электроустановки — заземляющее устройство — земля — сопротивления ХL3, RL3, XL2, RL2 — фазы L3 и L2. В результате этого ток замыкания распределяется между заземляющим устройством и человеком. Так как сопротивление заземлителя (оно должно быть не более 10 Ом) во много раз меньше сопротивления человека (1000 Ом), то через тело человека будет проходить малый ток, не вызывающий его поражения. Основная часть тока пойдет по цепи через заземлитель.

Заземлители могут быть естественными и искусственными. В качестве естественных заземлителей используют металлические конструкции и арматуру зданий и сооружений, имеющие хорошее соединение с землей, проложенные в земле водопроводные, канализационные и другие трубопроводы (за исключением трубопроводов горючих жидкостей, горючих и взрывоопасных газов и трубопроводов, покрытых изоляцией для защиты от коррозии).

В качестве искусственных заземлителей применяют одиночные или соединенные в группы металлические электроды, забитые вертикально или уложенные горизонтально в землю. Электроды изготавливают из отрезков металлических труб диаметром не менее 32 мм и толщиной стенок не менее 3,5мм, угловой стали с толщиной полок не менее 4 мм, полосы сечением не менее 100 мм2, а также из отрезков швеллеров, прутковой стали диаметром не менее 10мм. Электроды, выполненные из более тонких профилей, вследствие коррозии быстро выходят из строя. Кроме того, тонкие профили имеют малый контакт с землей, поэтому их применение нежелательно. Длину электродов и расстояние между ними принимают не менее 2,5–3,0 м.

Между собой вертикальные электроды в групповом заземлителе соединяют с помощью сварки перемычкой, выполненной из аналогичных материалов и тех же сечений, что и сами электроды. Заземляющее устройство должно иметь вывод наружу (на поверхность земли), выполненное на сварке из таких же материалов. Оно служит для подсоединения заземляющего проводника.

Для осуществления заземляющих функций сопротивление заземляющего устройства в электроустановках напряжением до 1000 В в сети с изолированной нейтралью должно быть не более 4 Ом.

Необходимое сопротивление достигают установкой соответствующего количества электродов в заземлителе, определяемых расчетом.

Сопротивление заземляющего устройства — это отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю. Различают выносное и контурное заземляющие устройства.

Выносное устройство располагают за пределами площадки с заземляемым оборудованием. Его достоинство состоит в возможности выбора грунта с наименьшим удельным сопротивлением.

Контурное заземление выполняют забивкой электродов по контуру заземляемого оборудования и между ним. Такая установка электродов создает дополнительный защитный эффект за счет повышения и выравнивания (более равномерного распределения) потенциалов земли в зоне нахождения человека.

Занулениеэто преднамеренное электрическое соединение металлических нетоковедущих частей электроустановок, которые могут оказаться под напряжением, с глухозаземленной нейтралью источника тока (генератора или трансформатора).

В четырехпроводных сетях с нулевым проводом и глухозаземленной нейтралью источника тока напряжением до 1000 В зануление — основное средство защиты.

Подсоединение корпусов электроустановок к нейтрали источника тока осуществляют с помощью нулевого защитного проводника (РЕ — проводника). Его нельзя путать с нулевым рабочим проводом (N — проводником), который также соединен с нейтралью источника, но служит для питания однофазных электроустановок. Нулевой защитный проводник прокладывают по трассе фазных проводов, в непосредственной близости от них.

Защитное действие зануления основано на снижении до безопасной величины тока, проходящего через человека в момент касания им поврежденной электроустановки, и последующем отключении этой установки от сети.

Работает зануление следующим образом: при попадании напряжения на корпус зануленной электроустановки 8 (рис. 4) большая часть тока с него пойдет в сеть через нулевой защитный провод 6. По цепи: корпус электроустановки 8 — человек — земля — заземляющее устройство 9 — нулевой рабочий провод 5 — пойдет незначительный ток, не вызывающий поражения (ввиду более высокого сопротивления этой цепи по сравнению с сопротивлением цепи через нулевой защитный провод 6).Одновременно с этим замыкание на корпус фазного провода при такой схеме защиты автоматически превращается в однофазное короткое замыкание между фазным и нулевым рабочим проводом 5 сети, в результате чего через 0,2—7 с срабатывает токовая защита (перегорает предохранитель 7, срабатывает автоматический выключатель и т. п.), и электроустановка, а вместе с ней и человек, полностью обесточиваются.

Таким образом, в первоначальный момент зануление работает аналогично защитному заземлению, а в последующем оно полностью прекращает действие тока на человека. Только при этом ток, проходящий через тело человека до срабатывания защиты, будет в несколько раз меньше, т.к. сопротивление зануляющего проводника обычно не превышает 0,3 Ом, а сопротивление заземлителя допускается до 4 Ом.

Что такое зануление и заземление

Рис. 4. Схема зануления:

1 — заземлитель нейтрали трансформатора; 2 — источник тока (трансформатор); 3 — нейтраль источника тока; 4 — зануление корпуса трансформатора; 5 — нулевой рабочий (он же и нулевой защитный) провод сети; 6 — нулевой защитный провод электроустановки; 7 — предохранитель; 8 — электроустановка; 9 — повторное заземление нулевого защитного провода сети

В зануленных электроустановках до 1 кВ с глухозаземленной нейтралью с целью надежного обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых защитных проводников и их соединений должна обеспечить ток короткого замыкания, превышающий не менее чем в 3 раза номинальный ток плавкого элемента ближайшего предохранителя или автоматического выключателя, имеющего расцепитель с обратнозависимой от тока характеристикой (тепловой расцепитель), в 1,4 раза — для автоматических выключателей с электромагнитными расцепителями с силой номинального тока до 100 А и в 1,25 раза — с величиной тока более 100 А.

В зануленных электроустановках до 1 кВ с глухозаземленной нейтралью (с целью надежного обеспечения автоматического отключения аварийного участка) проводимость фазных и нулевых защитных проводников и их соединений должна обеспечить ток короткого замыкания.

Нулевой защитный провод 5 сети (рис. 4) должен обеспечивать надежное соединение корпусов электроустановок с нейтралью источника, поэтому все соединения выполняют сварными. В нем запрещается установка предохранителей и выключателей (за исключением случая одновременного отключения и фазных проводов).

Нулевой защитный провод 5 сети заземляют: у источника тока с помощью заземлителя 1; на концах воздушных линий (или ответвлений от них) длиной более 200 м; а также на вводах воздушной линии к электроустановкам. Повторные заземления 9 необходимы для уменьшения опасности поражения электрическим током при обрыве нулевого провода и замыкании фазы на корпус электроустановки за местом обрыва, а также для снижения напряжения на корпусе в момент срабатывания токовой защиты.

Согласно ПУЭ сопротивление заземляющего устройства, к которому присоединена нейтраль источника тока, с учетом естественных и повторных заземлителей нулевого провода должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях источника трехфазного тока 660, 380 и 220 В.

Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN–проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. При этом сопротивление растеканию заземлителя каждого из повторных заземлений должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях.

При удельном сопротивлении земли ρо > 100 Ом∙м допускается увеличивать указанные нормы в 0,01 ρо раз, но не более десятикратного.

Зануление (заземление) металлических корпусов переносных электроустановок осуществляют третьей жилой для однофазных или четвертой жилой для трехфазных электроприемников, находящейся в одной оболочке с фазными проводами.

Жилы этих проводов должны быть гибкими, медными, их сечение должно быть равно сечению фазных проводников и быть не менее 1,5 мм2.

Втычные соединители (вилки и розетки) должны быть выполнены так, чтобы соединение заземляющих и нулевых защитных проводников происходило до соединения фазных проводников, а рассоединение происходило в обратной последовательности. Обычно это достигают применением у вилки более длинного штыря для защитного проводника, чем для фазных проводов. Во всех случаях вилку подсоединяют к электроприемнику, розетку — к сети.

    1. Средства индивидуальной защиты от поражения электрическим то­ком

Средства индивидуальной защиты от поражения электрическим то­ком — электрозащитные сред­ства (ЭЗС), которые делятся на ос­новные и дополнительные.

Основные ЭЗС — это средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановок, что позволяет с помощью их прикасаться к токоведущим частям, находящимся под напряжением.

Для работы на электроустанов­ках до 1000 В к ним относятся: изолирующие штанги, изолирую­щие и электроизмерительные клещи, диэлектрические перчатки, слесарно-монтажный инструмент с изолированными рукоятка­ми, указатели напряжения.

При напряжении электроустановки свыше 1000 В основные средства включают изолирующие штан­ги, изолирующие и электроизмерительные клещи, указатели на­пряжения.

Дополнительные ЭЗС — это средства защиты, изоляция ко­торых не может длительно выдерживать рабочее напряжение электроустановок. Они применяются для защиты от напряжения прикосновения и шага, а при работе под напряжением исключи­тельно с основными ЭЗС.

К ним относятся: при напряжении до 1000 Вдиэлектрические галоши, коврики, изолирующие подставки; свыше 1000 Вдиэлектрические перчатки, боты, ков­рики, изолирующие подставки. ЭЗС должны иметь маркировку с указанием напряже­ния, на которое они рассчитаны, их изолирующие свойства под­лежат периодической проверке в установленные нормативами сроки.

Сроки испытаний защитных средств от поражения электрическим током представлены в табл.2.

Таблица 2

Сроки испытаний защитных средств от поражения электрическим током (фрагмент)

Защитное средство

Напряжение электроуста-новки

Срок периодичес-ких испытаний, мес.

Срок периодических осмотров, мес.

Изолирующие клещи

до 1000В

24

12

Указатели напряжения, работающие на принципе протекания активного тока

до 500В

12

перед употреблением

Инструмент с изолирующими рукоятками

до 1000В

12

то же

Перчатки резиновые диэлектрические

до 1000В

6

то же

Галоши резиновые диэлектрические

до 1000В

12

6

Коврики резиновые диэлектрические

до 1000В

24

12

studfiles.net

Способы защиты от опасных потенциалов

Ситуацию с повреждением междуфазной изоляции электрооборудования мгновенно пресекают защитные устройства: автоматические выключатели или предохранители. Но она лишь косвенно представляет опасность для человека.

Опаснее для людей как раз однофазное замыкание, в результате которого корпуса электродвигателей, электрошкафов, кабельных конструкций оказываются под напряжением.

Чтобы исключить риск поражения электротоком, нужно, чтобы при попадании напряжения на корпус произошло гарантированное короткое замыкание и потенциал на корпусе был максимально снижен.

Первое защитное действие достигается созданием цепи между корпусом и заземленной нейтралью электроустановки. При замыкании возникает ток, достаточно большой для срабатывания тех же защитных аппаратов, работающих при междуфазных замыканиях. Это называется защитным отключением.

Для реализации второго метода всем потенциально опасным металлическим частям электрооборудования придают потенциал земли. Делается это преднамеренным их соединением с заземляющим устройством. Мероприятие носит название – защитное заземление.

Системы заземления электроустановок до 1000 В получили в 7-м издании ПУЭ классификацию. Рассмотрим эти системы по очереди.

tn c Система заземления TN-C

В этой конструкции нет ничего нового. Она была такой долгие годы.

Для питания потребителей в ней используется 4 провода. Три из них – фазные, один – нулевой. По последнему протекает рабочий ток нагрузки. Но он же используется и для реализации защитных целей, соединяясь с контуром заземления нейтрали силового трансформатора, питающего электроустановки. К нему же присоединяются и корпуса электрооборудования. Называется он проводником PEN. Из-за того, что в нем сочетаются функции защиты и транспортировки рабочего тока к месту назначения, он получил название «совмещенный проводник».

В итоге реализуются обе задачи: ток замыкания на землю высок – отключение поврежденного участка происходит достаточно быстро. К тому же при повреждении малое сопротивление PEN-проводника шунтирует тело прикоснувшегося к корпусу человека, имеющее сопротивление порядка килоома. Большая часть тока стекает в землю.

Но по PEN-проводнику протекает рабочий ток нагрузки. Контактные соединения от этого могут нарушиться, соединение – стать ненадежными или прерваться вовсе.

Так исчезает столь необходимая связь с заземляющим устройством.

Даже, если имеется повторное заземление PEN-проводника на вводе в здание.

Мало того, наличие тока в этом проводнике приводит к возникновению потенциала, увеличивающегося по мере удаления от точки связи с контуром заземления.

А при обрыве проводника PEN картина и вовсе ужасающая. Потенциал на корпусах за местом обрыва может теоретически достигнуть и 220 В.

Добавим ко всему этому технологически трудную реализацию соединения корпусов некоторых электроприемников с PEN. Как заземлить корпус электроплитки, подключаемой к сети через розетку?

Развитие бытовых электроприборов, требующих применения защитных мер по электробезопасности, привело к усовершенствованию системы TN-C. Подробнее о системе TN-C можно почитать в отдельной статье.

tn s Система заземления TN-S

Отличие от предыдущей рассмотренной системы заземления в том, что функции рабочего-нулевого и защитного проводника разделены в разных физических проводниках. Нулевой рабочий (N) – проводит ток нагрузки, нулевой защитный (РЕ) – подключается к контуру заземления.

В результате происходит полное избавление от потенциала на корпусах, появляющихся в «особо отдаленных районах» электрической сети, а также – при обрывах проводников. Максимум, что грозит при отсутствии целостности проводника РЕ – отсутствие защиты. Но оборваться у него шансов немного – ток-то по нему не протекает, с чего бы вдруг потеряться выполненным по всем электрическим правилам контактным соединениям?

Поскольку сечение РЕ-проводников в составе кабельных линий обычно оказывается равным сечению фазных, упростилась задача присоединить их к корпусам любого электрооборудования.

Даже к заземляющему контакту розетки. Что позволило распространить защитные меры безопасности на все бытовые электроприборы: на ту же электроплитку, в частности.

Правда, в силовые кабельные линии добавилась лишняя жила. Ну что же – за безопасность надо платить.

Все вновь монтируемые электроустановки теперь, как правило, выполняются по этой системе заземления.

Подробнеео системе TN-S можно почитать в отдельной статье.

tn c s Система заземления TN-C-S.

Существенной проблемой при реализации системы TN-S является то, что реконструкция электроустановок и строительство новых происходит зачастую без реконструкции самой трансформаторной подстанции. Обычно переделывается какая-то ее часть, начиная от распределительного щита на вводе до последнего потребителя. До этого щитка система заземления неизбежно сохраняет старую конструкцию.

Эта проблема заранее решена тем же самым пунктом ПУЭ, описывающим переходной вариант системы заземления, обозначенный, как TN-C-S. В нем нетронутая реконструкцией часть электроустановки вполне себе официально не меняет своей структуры, оставаясь то же TN-C. А вот с некоторой точки распределительная сеть выполняется по новым правилам.

Суть в разделении проводника PEN на два: рабочий и защитный.

Выполняется это во вводном распределительном устройстве. В нем устанавливается две распределительных шинки: N и РЕ. Проводник PEN в обязательном порядке присоединяется к РЕ, а между самими шинками монтируется перемычка.

Подробнее о системе TN-C-S можно почитать в отдельной статье.

Почему к РЕ?

Если перемычка между шинами оборвется (этого нельзя исключать ни в коем случае), то при таком способе соединения нулевая рабочая шина потеряет связь с нейтралью электроустановки. При этом возможны тяжелые последствия для электрооборудования – но соединение с защитной шиной не пострадает, люди останутся в безопасности.

К тому же не заметить сей факт обрыва невозможно. Его сразу побегут искать.

При обратной же схеме коммутации обрыв перемычки заметят разве что при плановых измерениях целостности защитной цепи. А за это время люди останутся без защиты – корпуса «повиснут в воздухе». Хорошо бы, если так.

Предоставленная сама себе сеть из соединенных между собой защитных проводников таит не меньшую опасность, чем при обрыве PEN-проводника система TN-C.

Блоки питания бытовой аппаратуры (компьютеров или стиральных машин, к примеру) и полупроводниковые ПРА люминесцентных ламп при отсутствии соединения их корпусов с заземляющим устройством выдают на них потенциал порядка 110 В через конденсаторы входного помехоподавляющего фильтра блока питания. Он распространяется по всей сети, появляясь на прочих металлических частях, соединенных с РЕ-проводником.

Не стоит забывать о том, что эта система унаследовала от TN-C ее главные недостатки: потенциал на PEN-проводнике и опасные напряжения на нем при его обрыве. Главный метод борьбы с ними – собственный контур повторного заземления, вывод от которого присоединяется к шине РЕ вводного щитка.

Но есть и другие системы заземления, использующиеся в частных случаях для защиты людей.

tn tt Система заземления ТТ

В предыдущих системах все заземляющие устройства соединяются в единую цепь проводниками PEN или (и) РЕ. В системе ТТ потребитель имеет свой собственный контур заземления, не связанной с проводником PEN питающей линии. Все его электрооборудование связано с этим контуром проводниками РЕ.

Таким образом, исчезают проблемы с возможным обрывом питающего потребителя PEN- проводника. Он используется как нулевой рабочий и никак не связан с корпусами.

Защита с помощью предохранителей и автоматических выключателей у потребителя работает только на устранение междуфазных замыканий, а также – между фазой и нулевым проводником.

Мерой же для защитного отключения служит обязательная установка УЗО у потребителя.

Внедрение этого метода заземления имеет показания к применению и при большой протяженности питающих линий, когда повышенное сопротивление петли фаза-нуль не позволяет произвести защитное отключение в нормируемое время.

Подробнеео системе TT можно почитать в отдельной статье.

tn ti Система заземления IT

А здесь нулевой проводник отсутствует вовсе, так как эта система – с изолированной нейтралью. Подключение нагрузки возможно только на линейные напряжения сети.

Ничего опасного для потребителя при возникновении повреждения одной фазы на корпус не происходит. Ток замыкания на землю ничтожен и не принесет организму особого вреда.

А для ликвидации опасных по величине токов все линии защищают УЗО в обязательном порядке.

Но для фиксации замыканий на землю в таких сетях устанавливаются специальные элементы – реле утечки. При его срабатывании повреждение требуется активно поискать. А при возникновении второго замыкания участок сети с повреждением подлежит немедленному отключению.

pue8.ru

Заземление

Что такое заземление – это контур, который соединят бытовые приборы через розетки с землей. Это самый действенный вариант обезопасить себя от удара тока. Можно спокойно прикасаться к металлическим деталям корпуса, не получив при этом неприятных ощущений.

Самое важное, чтобы заземляющий контур имел минимальный показатель сопротивления. Вот почему его собирают из стальных или медных элементов. Меньшее сопротивление дает возможность через проводник пропустить ток большего значения. А сила тока короткого замыкания зависит от мощности прибора (зависимость прямая) и сопротивления проводника (зависимость обратная). То есть, чем больше мощность и меньше сопротивления, тем большей силы ток может пройти по заземляющему элементу.

Часть контура закапывается в грунт рядом с домом, вторая часть – это проводники, соединяющиеся между собой через распределительный щит. Обе части соединяются на улице методом сварки.Схема заземления

Есть еще одно отличие, которая разделяет между собой защитное заземление и зануление. Это толщина проводников, минимальный размер которых составляет 10 мм² для медного провода или 6-8 мм² для стального. При таких величинах можно не бояться появления в сети тока большой силы, который возникает при замыкании внутри агрегатов большой мощности. К примеру, в бойлере (до 6 кВт) или в стиральной машинке (до 2 кВт).

Схема подключения заземления отличается от схемы зануления. В ней присутствует три провода, которые подводятся к розетке: фаза, ноль и земля. При этом конструкция новых розеток и вилок сделана таким образом, чтобы еще до коммутации фазы и нуля в них первыми подключились контакты заземления. Они же при вынимании вилки из розетки отключаются последними. Это уже обеспечивает безопасность. Теперь перейдем конкретно к рассмотрению вопроса: разница между заземлением и занулением.

Зануление

В электрической разводке, собранной по схеме зануления, также присутствуют три провода. Но контакты земля соединены напрямую с нулевыми контактами в распределительном щите. При этом получается, что заземляющий провод и есть нулевой. В системе TN-C, которая присутствует во всех старых домах, подводка к розеткам состоит из двух проводов: фаза и ноль.

Внимание! При установке современной розетки с контактом земля, многие электрики ставят перемычку между нулевым контактом и заземляющим. Это тоже является занулением и конечно, отличается от заземления. Главное, так делать нельзя!

Все дело в том, что нейтраль трансформатора, проведенная по нулевому проводу до распределительного щита, является заземляющим проводником. Именно от названия нулевого провода и названа зануляющая система. Оптимально, если провод PE будет проведен от розетки прямо к распределительному щиту. Если делать перемычку внутри розетки, то при обрыве нулевого проводника N оборвется и заземляющая сеть. Поэтому использовать эту схему категорически запрещается.Схема зануления

В чем минус этого способа. В распределительном щите на фазный контур устанавливается автомат, который отключается при появлении короткого замыкания. Но все дело в том, что это устройство реагирует на силу тока, которая определяется характеристиками вставки внутри автомата. К примеру, на панели может быть указан показатель – 16 А. То есть, он будет реагировать именно на эту силу тока или большую. Все, что меньше данного значения, легко проскакивает, и автомат на это не реагирует. Он не будет разрывать цепь, к примеру, если сила тока короткого замыкания равна 10 амперам. А это величина, которая может нанести увечья человеку. При включенном автомате на металлическом корпусе бытового прибора образуется большой потенциал напряжения.

Основное отличие

Чем отличается заземление от зануления в чисто защитных действиях? Чему отдать предпочтение: занулению или заземлению?

Оба варианта являются заземляющими. Но в системе зануления используется нулевой проводник, который соединяет распределительный щит в доме с контуром заземления, расположенного на подстанции. По сути, получается так, что нейтраль трансформатора подключается напрямую с землей внутри подстанции. При этом от нее отходит один провод – он же нулевой и заземляющий, поэтому имеет обозначение «PEN». В распределительный щит входят два провода: фаза и ноль PEN. Заземляющий провод (PE), проведенный до розеток, соединяется с нулевым PEN в распределительном щитке. То есть, выходящие из дома ноль (N) и земля (PE) соединяются в один проводник PEN, который тянется до трансформатора.

В системе заземления к заземляющей конструкции в подстанции подводится два проводника: ноль (N) и земля (PE). То есть, до распределительного щита идет три провода: фаза, ноль и земля. Этим же количеством они входят в дом и доводятся до розеток. При такой схеме происходит выравнивание потенциалов напряжения между фазой и заземляющим проводником, когда появляется короткое замыкание.

Если сказать короче, то заземление и зануление отличаются между собой так:

  • защита человека от напряжения на металлическом корпусе бытового прибора при зануляющей схеме спасает автомат, который разрывает питающую цепь;
  • заземляющая схема – это защита с помощью снижения потенциала напряжения на корпусе прибора, за счет отвода тока в грунт.

И хотя задачи обе системы выполняют одну – защита человека, но обеспечивают они эту защиту по-разному.

Теперь, что касается области применения той или иной защиты. В электроустановках, которые работают от напряжения до 1000 вольт, используются пять заземляющих систем: TN-C, TN-C-S, TN-S, TT, IT. Зануление используется в трех первых. Заземление в двух последних.

То есть, зануление соединяется с нейтралью трансформатора или отдельным проводником, или совмещенным с нулевым. Заземляющая разводка сооружается, как отдельно собранная конструкция рядом с домом, она носит аббревиатуру TT. При этом проводник PE никак не связан с проводником PEN.

Разводка IT – это схема с изолированной нейтралью. То есть, в трансформаторной подстанции нейтраль не соединена с заземляющим контуром. От нее отходит нулевой проводник N, который протягивается до распределительного щита в доме. А вот с заземлением напрямую соединяется заземляющий проводник PE, который соединяет этот контур с распределительным ящиком. В этом случае, как и при системе TT, можно установить заземляющую конструкцию около дома, собрав его своими руками. Что даст возможность не тянуть далеко проводник PE. На сегодняшний день это самый идеальный вариант.

Итак, подводя итог разбора: заземление или зануление, отметим, что первую схему лучше всего использовать в частных домах путем установки заземляющей конструкции, вторую в городских квартирах. Тем более, при строительстве многоквартирного дома раньше использовалась схема TN-C, сегодня TN-C-S.

vseobelektrike.com


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Adblock
detector